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Variational data assimilation technique applied to identification of optimal approximations
of derivatives near boundary is discussed in frames of one-dimensional wave equation.
Simplicity of the equation and of its numerical scheme allows us to discuss in detail as
the development of the adjoint model and assimilation results. It is shown what kind of
errors can be corrected by this control and how these errors are corrected. This study is car-
ried out in view of using this control to identify optimal numerical schemes in coastal
regions of ocean models.
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1. Introduction

It is now well known, even the best model is not sufficient to make a good forecast. Any model depends on a number of
parameters, requires initial and boundary conditions and other data that must be collected and used in the model. However,
interpolating or smoothing observed data is not the best way to incorporate these data in a model. Lorenz, in his pioneer
work [1] has shown that a geophysical fluid is extremely sensitive to initial conditions. This fact requires to bring the model
and its initial data together, in order to work with the couple ‘‘model-data” and to identify the optimal initial data for the
model taking into account simultaneously the information contained in the observational data and in the equations of
the model.

Optimal control methods [2] and perturbations theory [3] applied to the data assimilation technique [4,5] show the way
to do it. They allow to retrieve an optimal initial point for a given model from heterogeneous observation fields. Since the
early 1990’s, many mathematical and geophysical teams have been involved in the development of the data assimilation
strategy. One can cite many papers devoted to this problem, as in the domain of development of different techniques for
the data assimilation and in the domain of its applications to the atmosphere and oceans.

However, overwhelming majority of data assimilation methods are now intended to identify and reconstruct an
optimal initial point for the model. Since Lorenz [1], who has pointed out the importance of precise knowledge of the starting
point of the model, essentially the starting point is considered as the control parameter and the target of the data
assimilation.
. All rights reserved.
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Of course, the model’s flow is extremely sensitive to its initial point. But, it is reasonable to suppose that a geophysical
model is also sensitive to many other parameters like bottom topography, boundary conditions on rigid and open bound-
aries, forcing fields and friction coefficients. All these parameters and values are also extracted in some way from observa-
tional data, interpolated to the model’s grid and can neither be considered as exact, nor as optimal to the model. On the other
hand, due to non-linearity and intrinsic instability of model’s trajectory, its sensitivity to all these external parameters may
also be exponential.

Numerous studies show strong dependence of the model’s flow on the boundary data [6,7], on the representation of the
bottom topography [8–10], on the wind stress [11,12], on diffusivity coefficients [13] and on fundamental parametrization
like Boussinesq and hydrostatic hypotheses [14]. But few papers are devoted to the development of data assimilation tech-
niques intended to identify and to control these model’s parameters. One can cite several attempts to use data assimilation in
order to identify the bottom topography of simple models [15,16] and in order to control open boundary conditions in coast-
al and regional models [17–19]. Boundary conditions on rigid boundaries have been controlled by data assimilation for heat
equation (see for example [20,21]), but this control concerns the diffusion operator rather than transport and advection type
operators used in geophysical models.

This paper presents a preliminary study of using variational data assimilation in order to identify an optimal parametri-
zation of boundary flows and boundary conditions on rigid boundaries. Despite the boundary configuration of the ocean is
steady and can be measured with much better accuracy than the model’s initial state, it is not obvious how to represent it on
the model’s grid because of limited resolution. The coastal line of continents possesses a very fine structure and can only be
roughly approximated by the model’s grid. Consequently, boundary conditions are defined at the model grid’s points which
are different from the coast. Even the most evident impermeability condition being placed at a wrong point may lead to some
error in the model’s solution. From physical point of view, we should accept the flux can cross the boundary in places where
the boundary is in water, prescribing some integral properties on the flux.

Even in a fine resolution model when boundary currents are explicitly resolved, it is not clear what kind of boundary con-
ditions to prescribe for tangential velocities. However, prescribing slip or no-slip conditions may result in a drastic change of
the global circulation (see [6]). Consequently, it may be reasonable to use variational data assimilation in order to determine
what boundary conditions are optimal for the model’s variables.

Studies of the possibility to control boundary conditions on rigid boundaries for equations containing hyperbolic opera-
tors can be found in [22] on the example of non-linear balance equation, and in [23] and [24] on the example of the Burgers
equation. The principal possibility to improve the model’s solution controlling its boundary values are shown in all these
papers. However, as it has been noted in [23], particular attention must be paid to the discretization process which must
respect several rules because it is the discretization of the model’s operators takes into account the set of boundary condi-
tions and introduces them into the model. Consequently, instead of controlling boundary conditions themself, it may be
more useful to identify optimal discretization of differential operators in points adjacent to boundaries because this is more
general case. Indeed, boundary conditions participate in discretized operators, but considering the discretization itself, we
take into account additional parameters like the position of the boundary, lack of resolution of the grid, etc.

In this paper we use data assimilation to control the discretization of derivatives in adjacent to boundary grid points. The
development of the data assimilation is illustrated on the example of the simplest one-dimensional wave equation. On one
hand, the simplicity of the equation allows us to clearly see technical points of the development (like the algorithm of dif-
ferentiation and development of the adjoint equation) without being overwhelmed by complexity of operators and grids. On
the other hand, the knowledge of the exact solution and of the errors of numerical discretization of the wave equation allow
us to clearly see how these errors are corrected by data assimilation. The purpose of the paper is to study the possibility to
control boundary numerical scheme by data assimilation and the particularities of this type of control in view to develop and
use the data assimilation to identify optimal numerical scheme in coastal regions of ocean models.

The paper is organized as follows. The second section describes the model, its adjoint and the data assimilation procedure.
The third section is devoted to numerical experiments and discussion.

2. One-dimensional wave equation

As it has been noted in the introduction, we consider one-dimensional wave equation written for u ¼ uðx; tÞ and p ¼ pðx; tÞ
in the following way:
@u
@t
� @p
@x
¼ 0

@p
@t
� @u
@x
¼ 0 ð1Þ
This equation is defined on the interval 0 < x < 1 with boundary conditions prescribed for u only:
uð0; tÞ ¼ uð1; tÞ ¼ 0 ð2Þ
Initial conditions are prescribed for both u and p
uðx;0Þ ¼ �u; pðx; 0Þ ¼ �p ð3Þ
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The equation is discretized on a regular grid that is somewhat similar to Arakawa’s C grid [25] in two dimensions:
ui ¼ uðihÞ for i ¼ 0; . . . ;N

pi�1=2 ¼ pðih� h=2Þ for i ¼ 1; . . . ;N ð4Þ
with h ¼ 1
N. This grid is well adapted to the prescribed boundary conditions because the boundary points x ¼ 0 and x ¼ 1 be-

long to the grid for u discretization, but do not belong to p-grid.
Discrete derivatives of u and p are defined as follows
@p
@x

� �
i

¼ 1
h

X2

j¼�1

ajpiþj�1=2

@u
@x

� �
iþ1=2

¼ 1
h

X2

j¼�1

ajuiþj ð5Þ
at all internal points in the interval, i.e. 2 6 i 6 N � 2 for @p
@x

� �
i and 1 6 i 6 N � 2 for @u

@x

� �
iþ1=2. Coefficients aj are supposed to be

known because we intend to control approximations near the boundary only. In this paper, we use either the sequence
aj ¼ ð0;�1;1;0Þ or the sequence aj ¼ 1

24 ð1;�27;27;�1Þ for j ¼ ð�1; 0;1;2Þ. One can easily see that corresponding approxima-
tions are of second and of fourth order approximation
piþ1=2 � pi�1=2

h
¼ @p

@x

� �
i
þ h2

24
@3p
@x3

 !
i

þ Oðh3Þ

pi�3=2 � 27pi�1=2 þ 27piþ1=2 � piþ3=2

24h
¼ @p

@x

� �
i
� 3h4

640
@5p
@x5

 !
i

þ Oðh5Þ ð6Þ
To be able to solve numerically the Eq. (1), we need also to approximate derivatives of u and p near boundaries at points
i ¼ 1=2;N � 1=2 and i ¼ 1;N � 1, respectively. These approximations are supposed to be different from (5) and include the
control variables in this study. Moreover, expressions (5) cannot be used at all for the fourth order approximation because
they require function’s values beyond the boundary: u�1 and p�1=2. We can, of course, extrapolate u and p beyond the domain
with the necessary order and substitute extrapolated values in (5), but it is not obvious what extrapolation formula is the
best for this purpose, especially for p. So, in order to obtain an optimal boundary approximation assimilating external data,
we suppose nothing about derivatives near the boundary points and write them in a general form
@p
@x

� �
1
¼ 1

h

XJ

j¼0

ap
j pjþ1=2

@u
@x

� �
1=2
¼ 1

h

XJ

j¼0

au
j uj ð7Þ
We do not fix the value of J in these formula intentionally because we shall see further its influence.
Here we can emphasize the choice to control the numerical scheme in the boundary region rather than boundary condi-

tions. The general form of boundary conditions that may be prescribed for u variable of the one-dimensional wave equation
writes
uð0; tÞ � A
@u
@x

0; tð Þ ¼ B
We cannot impose more complex boundary conditions (with second derivatives, for example) because we obtain a system
with no solution at all. Consequently, we can control only two parameters, A and B. It may be sufficient in particular cases,
but, as we shall see further, is not sufficient in general. However, controlling all coefficients of the numerical scheme (7), we
are free to choose as many aj as we need defining appropriate value of the parameter J.

We distinguish ap and au allowing different derivatives approximations for p and for u because of the different nature of
these two functions and different boundary conditions prescribed for them. Derivatives at the opposite side are calculated by
@p
@x

� �
N�1
¼ �1

h

XJ

j¼0

~ap
j pN�j�1=2

@u
@x

� �
N�1=2

¼ �1
h

XJ

j¼0

~au
j uN�j ð8Þ
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and coefficients ~ap and ~au are also considered as unknown control parameters different from ap and au. All together, we have
4ðJ þ 1Þ control parameters.

Time stepping is performed by leap-frog scheme
unþ1
i � un�1

i

2s � @p
@x

� �n

i
¼ 0;

pnþ1
i�1=2 � pn�1

i�1=2

2s � @u
@x

� �n

i�1=2
¼ 0 ð9Þ
The first time step is splitted into two stages in order to ensure second order approximation in time and to avoid typical leap-
frog splitting between odd and even timesteps.
u1=2
i � u0

i

s=2
� @p

@x

� �0

i
¼ 0;

u1
i � u0

i

s
� @p

@x

� �1=2

i
¼ 0;

p1=2
i�1=2 � p0

i�1=2

s=2
� @u

@x

� �0

i�1=2
¼ 0;

p1
i�1=2 � p0

i�1=2

s
� @u

@x

� �1=2

i�1=2
¼ 0: ð10Þ
Approximation of the derivative introduced by (5) and (7) depends on control variables a. The operator is not completely
defined as in usual schemes, but it is allowed to change its properties near boundaries in order to find the best fit with
requirements of the model and data. To assign variables ap and au we shall perform data assimilation procedure and find
their optimal values.
2.1. Tangent and adjoint equations

First of all, we calculate the Gâteaux derivative of the operator with respect to control parameters. Control variables are
supposed to have small variations and we determine how these variations will perturb the solution of the model. Thus, we
suppose that all a are replaced by some aþ da such that an Euclidean norm of kdak � kak. Let the model with aþ da have a
new solution uþ du; pþ dp. In this case, variables du; dp must satisfy
@du
@t
� DðpÞdp� dDðpÞp� dDðpÞdp ¼ 0

@dp
@t
� DðuÞdu� dDðuÞu� dDðuÞdu ¼ 0 ð11Þ
where variables du; dp are discretized on the same grid as u and p (4). Operators DðpÞðapÞ and DðuÞðauÞ are approximations of
derivatives defined by (5), (7), and (8), i.e. for example, for the p derivative
DðpÞðapÞ ¼ 1
h

ap
0 ap

1 ap
2 ap

3 � � � 0 0 0 0
a�1 a0 a1 a2 � � � 0 0 0 0
0 a�1 a0 a1 � � � 0 0 0 0
� � � � � � � � �
0 0 0 0 � � � a0 a1 a2 0
0 0 0 0 � � � a�1 a0 a1 a2

0 0 0 0 � � � �~ap
3 �~ap

2 �~ap
1 �~ap

0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ð12Þ
Operators dDðpÞ and dDðuÞ are the differences
dDðpÞ ¼ DðpÞðap þ dapÞ � DðpÞðapÞ ¼ 1
h

dap
0 dap

1 � � � 0 0
0 0 � � � 0 0
� � � � � � � � �
0 0 � � � 0 0
0 0 � � � �d~ap

1 �d~ap
0

0BBBBBB@

1CCCCCCA ð13Þ
and similarly for operators dDðuÞ and DðuÞ.
However, expressions dDðpÞp and dDðuÞu in (11) are not convenient to make further development. Writing an adjoint oper-

ator, we would better have a constant operator, which does not depend on da, multiplied by a variable vector which depends
on da. This is the case in products DðpÞdp where dp depends on da, but it is not the case in products like dDðpÞp where p is
solution of original equation and has no relation with da. It would be more convenient to rewrite these products:
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dDðpÞp ¼ 1
h

PJ

j¼0
dap

j pjþ1=2

0

..

.

0

�
PJ

j¼0
d~ap

j pN�j�1=2

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
¼ bP ~dapdDðuÞu ¼ 1

h

PJ

j¼0
dau

j uj

0

..

.

0

�
PJ

j¼0
d~au

j uN�j

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
¼ bU ~dau ð14Þ
where operators bP and bU are constructed from the solution p and u of the original equation. Their matrices have non-zero
elements in the first and in the last lines only:
bP1 ¼ ðp1=2;p3=2; � � � ;pJþ1=2;0; . . . ;0|fflfflfflffl{zfflfflfflffl}

Jþ1times

Þ; bPN ¼ ð0; . . . ;0|fflfflfflffl{zfflfflfflffl}
Jþ1times

; pN�J�1=2; . . . ;pN�1=2Þ

bU1 ¼ ðu0; u1; . . . ;uJ ;0; . . . ;0|fflfflfflffl{zfflfflfflffl}
Jþ1times

Þ; bUN�1 ¼ ð0; . . . ;0|fflfflfflffl{zfflfflfflffl}
Jþ1times

;uN�J; uN�Jþ1; . . . ;uNÞ ð15Þ
Vectors ~dap and ~dau are extracted from matrices dDðpÞ; dDðuÞ:
~dap ¼ ðdap
0; da

p
1; da

p
2; . . . ; dap

J ; d~ap
J ; d~ap

J�1; . . . ; d~ap
0Þ

t

~dau ¼ ðdau
0; da

u
1; da

u
2; . . . ; dau

J ; d~au
J ; d~au

J�1; . . . ; d~au
0Þ

t ð16Þ
It has to be noted, that operators bP and bU act from the space of the control variable a to the space of the model’s solution u or
p. Their matrices, consequently, are rectangular. Their dimensions are N � 2ðJ þ 1Þ and ðN � 1Þ � 2ðJ þ 1Þ, respectively.

So far, both da and ðdu; dpÞ are supposed to be small, we neglect their products in (11) and get
@du
@t
¼ DðpÞdpþ bP ~dap

@dp
@t
¼ DðuÞduþ bU ~dau ð17Þ
with the same boundary conditions (2) for ðdu; dpÞ. At initial time both du and dp are taken to be zero because our study is
confined at evolution of a pure perturbation due to boundary scheme.

The same time stepping as in (9) is applied to (17):
dunþ1 � dun�1

2s
¼ DðpÞdpn þ bPn ~dap

dpnþ1 � dpn�1

2s
¼ DðuÞdun þ bUn ~dau ð18Þ
The first step of the tangent linear model (17) is written according to the scheme (10). Taking into account the zero initial
condition duðx;0Þ ¼ 0; dpðx;0Þ ¼ 0 we write
du1=2 ¼ s
2
cP0 ~dap; dp1=2 ¼ s

2
bU0 ~dau

du1 ¼ sðDðpÞdp1=2 þ bP1=2 ~dapÞ; dp1 ¼ sðDðuÞdu1=2 þ bU1=2 ~dauÞ ð19Þ
Eq. (18) can be rewritten in a matricial form:
dunþ1

dun

dau

dpnþ1

dpn

dap

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼

0 I 0 2sDðpÞ 0 2sbPn

I 0 0 0 0 0

0 0 I 0 0 0

2sDðuÞ 0 2sbUn 0 I 0

0 0 0 I 0 0

0 0 0 0 0 I

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

dun

dun�1

dau

dpn

dpn�1

dap

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ð20Þ
with the first step (19)
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du1

du0

dau

dp1

dp0

dap

0BBBBBBBB@

1CCCCCCCCA
¼

s2

2 DðpÞ bU0 sbP1=2

0 0
I 0

�sbU1=2 s2

2 DðuÞbP0

0 0
0 I

0BBBBBBBBB@

1CCCCCCCCCA
dau

dap

� �
ð21Þ
To obtain the adjoint model for Euclidean scalar product, we introduce adjoint variables
ð/n
u; /nþ1

u ; nn
u; /n

p; /nþ1
p ; nn

pÞ
t ð22Þ
and write backward evolution with transpose matrices (20)
/n�1
u

/n
u

nn�1
u

/n�1
p

/n
p

nn�1
p

0BBBBBBBBBB@

1CCCCCCCCCCA
¼

0 I 0 2sðDðuÞÞ� 0 0
I 0 0 0 0 0
0 0 I 2sðbUnÞ� 0 0

2sðDðpÞÞ� 0 0 0 I 0
0 0 0 I 0 0

2sðbPnÞ� 0 0 0 0 I

0BBBBBBBBB@

1CCCCCCCCCA

/n
u

/nþ1
u

nn
u

/n
p

/nþ1
p

nn
p

0BBBBBBBBB@

1CCCCCCCCCA
ð23Þ
The last step of the adjoint model is the adjoint of the first step of the tangent model:
n0
u

n0
p

 !
¼

s2

2 ðbU0Þ�ðDðpÞÞ� 0 I sðbU1=2Þ� 0 0

sðbP1=2Þ� 0 0 s2

2 ðbP0Þ�ðDðuÞÞ� 0 I

 !
/1

u

/2
u

n1
u

/1
p

/2
p

n1
p

0BBBBBBBBBB@

1CCCCCCCCCCA
ð24Þ
where operators ðbUnÞ�; ðDðpÞÞ�; ðbPnÞ�; ðDðuÞÞ� are adjoints to (12) and (15).
We can see that the right hand side of the tangent linear model (17) is composed by two terms: DðpÞdp; or DðuÞdu andbP ~dap; or bU ~dau. The first one, (12), is responsible for the evolution of a small perturbation by the model’s dynamics, while

the second one, (15), determines the way how the uncertainty is introduced into the model. The first term is similar for
any data assimilation, while the second one is specific to the particular variable under identification. This term is absent
when the goal is to identify the initial point because the uncertainty is introduced only once, at the beginning of the model
integration. But, when the uncertainty is presented in the approximation of derivatives near the boundary, or some other
internal parameter of the model or of its numerical scheme, the perturbation is introduced at each time step.

2.2. Cost function

To perform variational data assimilation we introduce the following cost function:
IðaÞ ¼
Z T

0

Z 1

0
uða; x; tÞ � uobsðx; tÞÞ2 þ ðpða; x; tÞ � pobsðx; tÞÞ2dxdt ¼

Z T

0

uða; x; tÞ � uobsðx; tÞ
pða; x; tÞ � pobsðx; tÞ

 !�����
�����

2

dt ð25Þ
where the norm corresponds to the scalar product
uðx; tÞ
pðx; tÞ

� ����� ����2

¼
uðx; tÞ
pðx; tÞ

� �
;

uðx; tÞ
pðx; tÞ

� �� 	� 	
¼
Z 1

0
u2ðx; tÞ þ p2ðx; tÞdx ð26Þ
We suppose we have observations for all variables at any time. For numerical experiments in this paper we shall use the
exact solution of the Eq. (1) as observations. This will help us to see the assimilation procedure and its results in the simplest
and clear form. When this technique is applied to more complex model for which the exact solution is not available, we can
use either real observations or the model’s solution on a finer grid.

To calculate the gradient of the cost function, we calculate first its variation
dI ¼ Iðaþ daÞ � IðaÞ ¼ 2
Z T

0

uða;x; tÞ � uobsðx; tÞ
pða;x; tÞ � pobsðx; tÞ

 !
;

duðx; tÞ
dpðx; tÞ

� �* +* +
dt

¼ 2
Z T

0

uða;x; tÞ � uobsðx; tÞ
pða;x; tÞ � pobsðx; tÞ

 !
;T ðtÞ

dau

dap

� �* +* +
dt ¼ 2

Z T

0
AðtÞ uða;x; tÞ � uobsðx; tÞ

pða;x; tÞ � pobsðx; tÞ

 !
;

dau

dap

� �* +* +
dt

ð27Þ
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where T ðtÞ dau

dap

� �
is the tangent model (21) and (20) integrated from t ¼ 0 to t and AðtÞ is the adjoint model integrated from

t to 0.
Thus, the gradient of the cost function
rI ¼ 2
Z T

0
AðtÞ uða; x; tÞ � uobsðx; tÞ

pða; x; tÞ � pobsðx; tÞ

 !
dt ð28Þ
is obtained as the sum of the adjoint model integrations. Each integration of the adjoint model starts from multiplication of
the matrix (23) by the vector
uða; x; tÞ � uobsðx; tÞ
0
0

pða; x; tÞ � pobsðx; tÞ
0
0

0BBBBBBBB@

1CCCCCCCCA

and followed by subsequent multiplications by matrices (23) taken at corresponding time. This product is finally multiplied

by the matrix (24) to get the vector
n0

u

n0
p

 !
which represents one half of the gradient of the cost function.

This gradient is used in the minimization procedure that is implemented in order to find the minimum
Ið�aÞ ¼min
a
IðaÞ ð29Þ
Coefficients �a are considered as coefficients realizing optimal discretization of the model’s operators in the boundary
regions.

The minimization procedure used here was developed by Jean Charles Gilbert and Claude Lemarechal, INRIA [26]. The
procedure uses the limited memory quasi-Newton method.

3. Results of assimilation

Exact solution of the Eq. (1) can easily be found by the method of variables separation. We look for solutions in a special
form uðt; xÞ ¼ aðtÞbðxÞ. A consequence is that
a00

a
¼ b00

b
¼ �k
The value of k is determined so that there exists a non-trivial solution of the boundary-value problem
b00 þ kb ¼ 0; bð0Þ ¼ bð1Þ ¼ 0
Values of k are all positive, and the solutions are trigonometric functions. A solution that satisfies square-integrable initial
conditions (3) for u and p can be obtained from expansion of these functions in the appropriate trigonometric series.

3.1. One trigonometric mode

We shall analyze first the behavior of one trigonometric mode of the solution and further proceed with the analysis of
more complex functions.

Let us define the initial point for u and p in (3) as
uðx; 0Þ ¼ sinðkpxÞ pðx; 0Þ ¼ cosðkpxÞ ð30Þ
The solution of (1) determined by k ¼ k2p2 is
uexactðx; tÞ ¼ �
ffiffiffi
2
p

sinðkpt � p=4Þ sinðkpxÞ; pexactðx; tÞ ¼
ffiffiffi
2
p

cosðkpt � p=4Þ cosðkpxÞ ð31Þ
The solution (31) will be used as artificial ‘‘observations” to be assimilated into the discretized wave equation. The use of
these data allows us to work with errors of numerical schemes only, avoiding all additional errors that may be present
due to inexact data.

Two numerical approximations are used for discretization of spatial derivatives in all internal points of the interval. Both
discretizations are performed by formula (5), but one of them is of second order of accuracy with coefficients aj ¼ ð0;�1;1;0Þ
for j ¼ ð�1;0;1;2Þ and the other one is of fourth order with aj ¼ 1

24 ð1;�27;27;�1Þ. The simplest second order scheme on the
boundary was used in both cases. That means both au

j and ap
j in (7) were chosen to provide classical approximation of deriv-

atives in points adjacent to boundary:
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@p
@x

� �
1
¼

p3=2 � p1=2

h
;

@u
@x

� �
1=2
¼ u1 � u0

h
ð32Þ
In order to see precisions of these schemes we calculate the difference between the numerical solution uðx; tÞ; pðx; tÞ and the
exact one uexactðx; tÞ; pexactðx; tÞ and plot its norm
nðtÞ ¼
Z 1

0
ððuðx; tÞ � uexactðx; tÞÞ2 þ ðpðx; tÞ � pexactðx; tÞÞ

2Þdx ð33Þ
Numerical solutions are obtained with k ¼ 3;h ¼ 1
30 and s ¼ 1

120.
It is well known that the principal error of classical (with approximations of derivatives near the boundary realized by

(32)) solutions for both second and fourth order schemes consists in the wrong wave speed. Numerical solution of (1) with
classical approximation of derivatives in points adjacent to boundary (32) is also composed of trigonometric functions of the
same amplitude but they oscillate with wrong frequency. The second order solution oscillates a little slower than the exact
one, and the fourth order oscillates a little faster.

In Fig. 1A and 1B we see that the difference between exact and numerical solutions oscillates with the frequency 3p but
have a growing amplitude. The velocity error is lower when the fourth order approximation is used, that’s why the amplitude
of the difference in Fig. 1B is lower than in Fig. 1A.

If we look at figures Fig. 2A and 2B, we see the same phenomenon. The solid line in Fig. 2A, that represents the norm of the
difference between the exact solution and its second order numerical approximation, grows first up to value of 120 at time
t ¼ 108:3 time units. After that, the norm decreases to 0 at time t ¼ 215:9 and restarts to grow. The fourth order approxi-
mation exhibits a similar behavior, the norm also grows up to value 120, but it reaches its maximum and the following zero
at t ¼ 491:1 and t ¼ 982:2 time units, respectively. These moments of time, being beyond the picture window, are not
shown. The speed error in the second order approximation results that at time t ¼ 215:9 numerical solution is exactly
one wave period later than the exact one, and the difference between them vanishes. So far, the speed error is lower for
the fourth order approximation, moments of the maximal and vanishing norm in Fig. 2B are reached later.

Thus, it was illustrated that the principal error of numerical approximation consists in the wrong wave speed. Indeed, if
we apply numerical approximations to trigonometric functions, we can calculate the error in the wave velocities. We sub-
stitute trigonometric solutions for u and p in the second order scheme,
t

x
Fig. 1A. x� t diagram of the error of the classical second order scheme. Contours from �0.2 to 0.2 with interval 0.05.



t

x
Fig. 1B. x� t diagram of the error of the classical fourth order scheme. Contours from �0.04 to 0.04 with interval 0.01.
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uðx; tÞ ¼ sinðkxÞ sinðktÞ ¼ sinðikhÞ sinðnksÞ
pðx; tÞ ¼ � cosðkxÞ cosðktÞ ¼ � cosðikhÞ cosðnksÞ
we get
@p
@x

� �n

i
¼

pn
iþ1=2 � pn

i�1=2

h
¼ cosðnksÞ cosððiþ 1=2ÞkhÞ � cosðði� 1=2ÞkhÞ

h
¼

2 sin kh
2

� �
sinðikhÞ cosðiksÞ

h

@u
@t

� �n

i

¼ unþ1
i � un�1

i

2s
¼ sinðikhÞ sinððnþ 1ÞksÞ � sinððn� 1ÞksÞ

2s
¼ sinðksÞ sinðikhÞ cosðiksÞ

s

Thus, the first equation in (1) is approximated by
@u
@t

� �n

i

� @p
@x

� �n

i

¼ sinðksÞ
s

� 2 sinðkh=2Þ
h

� �
sinðikhÞ cosðiksÞ ¼ h sinðksÞ � 2s sinðkh=2Þ

2s sinðkh=2Þ
@p
@x

� �n

i

ð34Þ
Similar substitutions for u and p in the second equation give us the approximation of the system
@u
@t

� �n

i

� b2
@p
@x

� �n

i

¼ 0

@p
@t

� �n

i

� b2
@u
@x

� �n

i

¼ 0 ð35Þ
with
b2 ¼
h sinðksÞ

2s sinðkh=2Þ ð36Þ
Thus, we see that numerical wave velocity is equal to b2 rather than to one.
If we perform similar manipulations with the fourth order spatial discretization, i.e. approximation of all spatial deriva-

tives by (5) with stencil aj ¼ 1
24 ð1;�27;27;�1Þ, we get the velocity error
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b4 ¼
12h sinðksÞ

27s sinðkh=2Þ � s sinð3kh=2Þ ð37Þ
In Fig. 3 we can see the form of speed errors b2 � 1 and b4 � 1 for three values of k. Horizontal axis is marked in values of s
h.

We see that using second order scheme, we can simulate the exact solution. Indeed, when h ¼ 2s the velocity of numer-
ically approximated wave is exactly equal to the velocity of the theoretical solution for any wave-number k. Using any lower
s we must assume the error in the waves velocity.

On the other hand, it is impossible to calculate an exact solution with a fourth order scheme. The value of b4 � 1 vanishes
in different points s=h for different k. The only conclusion we can make is the ratio s=h must either be small for this scheme,
or some higher order time stepping should be used.

For the given parameters (k ¼ 3; h ¼ 1
30 and s ¼ 1

120), errors in the wave velocity are calculated by (36) and (37):
b2 ¼ 3:09� 10�3 b4 ¼ �9:82� 10�4
These velocity errors determine the time when the numerical wave will be one period shifted with respect to the exact wave:
T ¼ wave period

b ¼ 2
kb. For the second order scheme with k ¼ 3 this time T is equal to 215.6 time units that corresponds well to

numerically obtained 215.9.
So, knowing errors produced by numerical schemes with chosen parameters, we shall perform the assimilation of the ex-

act solution in order to see how these errors can be corrected by the optimal boundary discretization.
We perform the data assimilation minimizing the cost function (25) assuming that the approximation of boundary deriv-

atives is composed by two terms only (J in (7) is equal to 1) and we get a numerical solution with no error in wave velocity.
The norm (33) of the difference between the exact solution and its optimal numerical approximation (lower lines in Fig. 2A
and 2B) oscillate around 3� 10�3 and 3� 10�4, respectively. X � t plots of the difference uðx; tÞ � uexactðx; tÞ presented in
Fig. 4A and 4B show very similar behavior of the error. The difference is composed of small moving waves that propagate
back and forth between the boundary and the middle of the interval for both the second and the fourth order schemes.
The amplitude of these waves is small comparing to errors of the classical scheme and, that is more important, remain small
during any integration time. This fact can be seen in Fig. 2A. Despite the data were assimilated during 6 time units only (T in
(25) is equal to 6), boundary approximation of derivatives has been sufficiently well identified to satisfy the model during
any long integration, 300 time units and more.

The choice of an optimal assimilation window (the time interval during which the assimilation is performed) is obvious
for this simple problem. Of course, T must not be too small. It must cover at least several wave periods in order to provide
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Fig. 4A. x� t diagram of the error of the modified second order scheme. Contours from �0.03 to 0.03 with interval 0.01.
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necessary information about errors in wave velocities. On the other hand, too large T is not optimal, because the assimilation
over a longer interval is less efficient. First, we do not need too much data to assimilate because of the simplicity of the mod-
el. And second, too large T reduces computational efficiency of the method because of the necessity to run the model for a
longer time in each iteration.

Thus, assimilating the exact solution of the equation, we can construct an optimal approximation of boundary derivatives
and obtain a rather accurate model which error is sufficiently small. However, boundary derivatives obtained in this proce-
dure are strange from the point of view of approximation.

When the second order approximation is used for derivatives in all internal points of the interval, the optimal discreti-
zation near the boundary obtained by data assimilation has a form
@u
@x

� �
1=2
¼ 1:048

u1 � u0

h
;

@p
@x

� �
1
¼

3:014p3=2 � 2:828p1=2

h
ð38Þ
First of all, these formulas do not approximate a derivative. The first one approximates the derivative multiplied by 1.048, the
Taylor expansion of the second one has a form
0:18
p1

h
þ 2:92

@p
@x

� �
1
þ 0:023h

@2p
@x2

 !
1

þ 0:12h2 @3p
@x3

 !
1

þ Oðh3Þ
Neither expression for @u
@x, nor for @p

@x has any reasonable order of approximation. The first one is of 0 order, the second is of �1
order. Moreover, while we get always the same formula for @u

@x, approximation of the derivative of p varies in different assim-
ilation experiments. Assimilations performed with different assimilation windows, for example, result in different coeffi-
cients for @p

@x. In fact, any combination ap
0;a

p
1 in (7) may be found as the result of assimilation under condition
ap
1 ¼ �1:104ap

0 � 0:107 ð39Þ
This linear relationship has been obtained experimentally performing assimilations with all assimilation windows in range
from 600 to 2400 time steps (with the time step equal to 1/120 of the time unit). Resulting couples ap

0;a
p
1 presented in Fig. 5

are positioned on a straight line with values ap
0 varying from �1.5 to �5.
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To explain these unusual approximations of the derivatives, we address first the u derivative, that is always approximated
by 1:048 u1�u0

h . We know, the principal error of the classical scheme consists in wrong wave velocity. The data assimilation
and control of the boundary derivatives can not modify numerical wave velocity. The only way for this control to get a better
solution consists in modifying the length of the interval. A numerical wave with wrong velocity will propagate on the inter-
val with wrong length. But the length of the interval is adapted by data assimilation in order to ensure the wave with numer-
ical velocity propagates the modified interval in the same time that the exact wave propagates the exact interval. So far, the
control can not correct the error in the wave velocity, it commits another error in length in order to compensate the first one.

As we have seen, the coefficient 1 in front of spatial derivatives in (1) has been replaced by b in (35). Theoretical wave
speed cexact ¼ 1 has, consequently, been replaced by numerical speed cnum ¼ b. The length of the interval Lexact ¼ 1 should also
be modified to satisfy
Lexact

cnum
¼ Lmodified

cexact
! Lmodified ¼ Lexact

cexact

cnum
¼ Lexact

b
ð40Þ
However, the control can not modify all grid cells of the interval uniformly. It can act near boundaries only and can modify
the length of cells just adjacent to boundary points. Hence, only two grid cells, one on the left and one on the right of the
interval, can be modified. The modified interval, hence, becomes composed by N � 2 cells of length h ¼ 1

N and two boundary
cells of length
2hmodified þ ðN � 2Þh ¼ hN
b
! hmodified

h
¼ 1� N

2
b� 1

b
ð41Þ
For given parameters (N = 30) b2 ¼ 1þ 3:09� 10�3 the boundary cells must be reduced to hmodified ¼ ð1� 0:046Þh. Conse-
quently, the derivative @u

@x

� �
1=2 must be calculated over modified cell
@u
@x

� �
1=2
¼ u1 � u0

hmodified
¼ 1

1� 0:046
u1 � u0

h
¼ 1:048

u1 � u0

h

This is exactly the coefficient obtained in the data assimilation for the derivative of u (38).
So, we can state that it is reasonable to obtain wrong approximation of derivatives near boundaries as a result of data

assimilation. This error compensates the error of the wave speed.
As for derivatives of p, they must also be modified. The only difference with u consists in fact that @p

@x

� �
1 is calculated over

two half of cells: one half of the first cell (adjacent to boundary point), and one half of the second one, next to the first. Hence,
only one half of the modified cell participates in the derivative of p and its modification is
@p
@x

� �
1
¼

p3=2 � p1=2

hmodified=2þ h=2
¼

p3=2 � p1=2

h
2h

hmodified þ h
ð42Þ
In this experiment we should have obtained @p
@x

� �
1 ¼ 1:023 p3=2�p1=2

h .
And indeed, the couple ap

0 ¼ �1:023;ap
1 ¼ 1:023 belongs to the set (39). This is the only point on this line where

ap
1 þ ap

0 ¼ 0 and the derivative is approximated with 0 order rather than order �1.
Non uniqueness of optimal ap

1 and ap
0 can be explained if we take into account that p has also a form of cosine of 3px.

Hence, at any time p1=2 ¼ AðtÞ cosð3ph=2Þ and p3=2 ¼ AðtÞ cosð9ph=2Þ with some A depending on time. Their linear combina-
tion ap

1p1=2 þ ap
0p3=2 can vanish if
ap
1 ¼ �

ap
0

4 cos2ðkph=2Þ � 3
ð43Þ
Consequently, all couples ap
1;a

p
0 belonging to the line that passes by the point ap

0 ¼ �1:023;ap
1 ¼ 1:023 with tangent

� 1
4 cos2ð3ph=2Þ�3 ¼ �1:108 produce the same derivative. This line coincides with the set (39) obtained numerically within accu-

racy of computation. Any point on this line gives coefficients ap that theoretically provide the same value of the derivative
and the same value of the cost function. This line forms the kernel of the Hessian of the cost function.

Numerical approximation of the solution is slightly different from cosine and numerical approximations of the derivative
obtained with different coefficients ap from the kernel are not exactly the same. The assimilation chooses the best fitting
point in the kernel for particular experiment that provides slightly lower value of the cost function. The choice of this point
depends on particular parameters of the experiment such as assimilation window. That’s why we get different pairs ap

0;a
p
1 in

different experiments. All these pairs are in the kernel of the Hessian, they provide almost the same cost function values, but
each of them corresponds better to one particular window. If we are interested in optimal boundary scheme for the whole
model rather than in the best fitting point for a given assimilation window, we may define another criterium of choice and
impose this criterium in the cost function. One choice, usually assumed in data assimilation, requires that optimal point
must be situated not far from the initial guess. However, adding this requirement would not allow us to choose one point
in the kernel. The requirement of low distance from the start would draw the optimal point out of the kernel because, as
we have seen above, the initial guess point is not situated in the kernel.

Instead of imposing low distance from the starting point of minimization, we prefer to require the order �1 term in the
Taylor expansion to vanish.
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This implies the sum
PJ

j¼0aj ¼ 0 must vanish. For this purpose we add the term
R ¼ g
XJ

j¼0

aj

 !2

ð44Þ
to the cost function (25) and appropriately modify its gradient (28) adding the term
rR ¼ 2g
XJ

j¼0

aj ð45Þ
Imposing sufficiently large weight g we get the only approximation of p derivative for any assimilation window. The deriv-
ative is approximated by ap

0 ¼ �1:023;ap
1 ¼ 1:023 that ensures vanishing first term in the Taylor expansion.

Modification of the cost function by (44) has a very small influence on the final value of the cost function because this
modification determines the choice of the particular point in the kernel of the Hessian.

Finally, we note that there is no significant difference in the final value of the cost function in experiments with different J
in (7). Several experiments have been carried out with 2, 3 and 5 controlled coefficients a, but the minimization procedure
has converged always to the same value. Obviously, two control coefficients are already sufficient in this simplest case. Add-
ing supplementary a just increases the kernel dimension with no influence on the cost function.

3.2. Two trigonometric modes

When initial conditions of the model (1) are more complex than one trigonometric mode, the exact solution of the wave
equation is a linear superposition of exact solutions corresponding to each trigonometric mode of the Fourier development of
initial conditions. Each mode has it’s own frequency and propagates with it’s own velocity.

Numerical solution for each Fourier mode commits an error in the wave velocity. But, as it has been discussed above, this
error is different for different modes because it depends explicitly on the wavenumber k (36) and (37). Consequently, in pres-
ence of multiple Fourier modes, the interval length must be modified in order to correct different errors in wave’s velocities
simultaneously.

We consider first a superposition of just two waves with k ¼ 2 and k ¼ 5. We see from the Eq. (41) that to compensate the
error in the wave velocity for the wave with k ¼ 2p, the control must modify the length of the boundary cell by
hmodified

h ¼ 1—0:020 and the coefficient in front of the approximation of the derivative of u at point 1/2 must be 1.021. In the
same time, the velocity error for the wave with k ¼ 5p is compensated when hmodified

h ¼ 1� 0:128 and the coefficient in front
of the derivative 1.142.

Performing experiments with both wavenumbers k ¼ 2 and k ¼ 5 separately and with their superposition, we see in
Fig. 6A that the data assimilation procedure is able to compensate the error in wave velocity in all three cases. The cost func-
tion of the model with original coefficients shows wrong velocities of numerical waves in all three experiments, but the
model’s solution with optimal coefficients is much closer to the exact one. We see the cost function values as low as
3� 10�4 for the wave with k ¼ 2 and 10�1 for the wave with k ¼ 5. The line that corresponds to the cost function in the
experiment with two waves superposed is indistinguishable from the line corresponding to the experiment with k ¼ 5. They
oscillate both around I ¼ 10�1. That means the residual error of assimilation of the superposition of two waves is close to the
biggest error of assimilation of each particular wave.

In order to analyze the expression that is used to calculate the derivative of u near boundaries in Fig. 6B, we perform a set
of assimilations with all assimilation windows in range from 600 to 2400 time steps (with the time step equal to 1/120 of the
time unit) for all three types of initial conditions of the model, i.e. one wave with either k ¼ 2p or k ¼ 5p and both of them.
When k ¼ 2p we get always the same resulting couples au

0 ¼ �1:021;au
1 ¼ 1:021 as expected. Coefficients au

0;au
1 in the exper-

iment with k ¼ 5p are also all positioned near the theoretical value ±1.142, but not as concentrated as in the experiment
with k ¼ 2p. Values in this experiment are distributed in the interval from 1.138 to 1.144. Obviously, the wave length of
the wave with k ¼ 5p is too short to be well reproduced by a 30 points resolution grid. This coarse resolution adds numerical
noise in the solution and leads to the dependence of the assimilation result on the window.

Optimal coefficients au
0;au

1 in the experiment with two waves are situated in the middle of the figure Fig. 6B. We can note
two particularities. First, their distribution is even more dispersive than with k ¼ 5p: they occupy the interval from 1.07 to
1.09. And second, expressions for u derivative near the left and near the right boundary are no longer the same. One can see
in Fig. 6B, the set of coefficients au

0;au
1 in this experiment is splitted into two subsets with a gap between them.

Coefficients of expressions for p derivative in the experiments with two waves (not shown) possess also a kernel that form
the line situated between lines obtained in experiments with single waves.

3.3. Other functions

If we consider an arbitrary functions as initial conditions of the wave equation, we have all admissible Fourier modes in
the solution. In order to see the action of the control in this situation we perform the data assimilation for the model with
initial conditions prescribed as
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uðx;0Þ ¼ 20x2ð1� xÞe�5x; pðx; 0Þ ¼ ðx� 0:5Þe2x ð46Þ
Combining polynomials and exponents we ensure that different trigonometric modes are present in the spectrum of initial
data that leads to a rich spectrum in time.
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First of all, the control of just two coefficients in expressions for derivatives is no longer able to ensure non growing cost
function beyond the assimilation window. We see in Fig. 7A that the cost function of the model with optimal coefficients
a0;a1 grows after the assimilation end in the same way as the cost function of the original model. Solid and upper dashed
(that corresponds to J ¼ 1) lines are parallel to each other. In fact, the data assimilation reduces the model’s error approx-
imately 20 times, but the behavior of the error remains the same. Consequently, we cannot state that the model’s error with
optimal boundary approximation will always be small. Increasing with time, the error will later reach the same values as the
error of the original model.

This fact can be explained by the analysis of the expression (41) for the second order scheme
hmodified ¼ h� Nh
2

b� 1
b
¼ h� b� 1

2b
¼ hþ 1

2
� s sinðkh=2Þ

h sinðksÞ

� �
ð47Þ
The coefficient in the expression for the derivative of u becomes
c ¼ h
hmodified

¼ h2 sinðksÞ
ðh2 � h=2Þ sinðksÞ þ s sinðkh=2Þ

ð48Þ
For the given parameters ðh ¼ 1=30; s ¼ 1=120Þ we get c ¼ 1
15 cosðk=120Þ�14. The denominator of this expression vanishes and

changes sign when k ¼ 120 arccos 14
15

� �
� 14:026p. Consequently, optimal expression for @u

@x at the first point for the wave with
k ¼ 15p must have an opposite sign with respect to the classical approximation, namely: @u

@x j1=2 ¼ �7:05 u1�u0
h . The wave with

k ¼ 15p is present in the spectrum of initial conditions (its wavelength is equal to 2p
k ¼ 4h) but corresponding optimal

expression for the derivative cannot be obtained in the assimilation procedure because the scheme is instable with negative
c. Hence, the minimum is unreachable and we cannot obtain the optimal approximations of derivatives near the boundary.
Data assimilation allows us to compensate the error in wave velocities for first 14 trigonometric modes, but all other modes
continue to propagate with wrong velocities. That’s why the cost function in the experiment with assimilated data is smaller
than the original cost function, but the long time behavior is similar in both experiments.

In order to obtain the cost function that does not increase after the end of assimilation, we may try to control more coef-
ficients a in (7) in order to be able to identify optimal coefficients in the domain where the scheme is stable. Increasing the
number of controlled parameters, we increase the number of degrees of freedom and the dimension of the kernel of Hessian.
The intersection of the kernel and the region where the scheme is stable may become non null and allow the assimilation to
reach the minimum.
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Fig. 7B. First two optimal coefficients for @u
@x with J ¼ 4 in experiments with different assimilation windows.
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Indeed, if we perform assimilation with J ¼ 4, i.e. 5 coefficients a in (7), we get smaller non increasing cost function (lower
dashed line in Fig. 7A).

Coefficients au in the experiment with J ¼ 4 are distributed in a wide area, showing larger multidimensional kernel of the
Hessian. An example of such a distribution is shown in Fig. 7B. To obtain this figure, we perform a set of experiments with
different assimilation windows in range from 800 to 5000 time steps of the model. In each assimilation we get different sets
of coefficients a but almost the same final cost function showing all obtained a are in the kernel of the Hessian. Only the first
two coefficients are plotted in Fig. 7B. One can see, they occupy much wider area than in experiments with one or two trig-
onometric waves and J ¼ 1 shown in Fig. 6B.
4. Conclusion

The purpose of this paper is to study the variational data assimilation procedure applied for identification of the optimal
parametrization of the derivatives near the boundary on the example of a simple wave equation in view to use this kind of
data assimilation in ocean models. Consequently, conclusions are formulated from this point of view.

Comparing this procedure with now well developed data assimilation intended to identify optimal initial data, we can say
there are both common points and differences as well.

Tangent (17) and adjoint (23) models are composed by two terms, presented by (12) and (15). The first one, DðuÞ (12),
governs the evolution of a small perturbation by the model’s dynamics. This term is common for any data assimilation no
matter what parameter we want to identify. The second one, bU or bP , (15), determines the way how the uncertainty is intro-
duced into the model. So, if we intend to identify an optimal boundary parametrization for a model with an existing adjoint
developed for data assimilation and identification of initial point, we can use such an adjoint in (12), because this component
of (11) is common for any data assimilation. However, the component described by (15) must be developed from the begin-
ning because it is specific to the particular control parameter. This development may be technically difficult for complex
models, especially on grids with distributed variables like Arakawa’s ‘‘C”-grid. Numerous interpolation and differentiation
operators are frequently applied successively to a model’s variable on these grids resulting in nonlinear dependence of
the model’s state on control coefficients. Development of the adjoint model and, particularly, its (15) part, is complicated
by working with nonlinearities of higher degree.

Another difference consists in the number of control parameters and their dimensions. The dimension of initial point of
the model is usually equal to the dimension of the model’s state variable. Contrary to this, when we control boundary param-
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etrization, the dimension of control variables is very different from the dimension of the model’s variable. Moreover, the
dimension of the control might be lower than the dimension of the model state because the dimension of the control is pro-
portional to the length of the boundary of the domain, while the dimension of the model’s state relates to the area of the
domain. That means the quantity of controlled parameters and the dimension of the gradient of cost function may be much
lower than the quantity of variables in the models state. Taking into account mentioned technical difficulties in development
of the adjoint, it may be reasonable to try to calculate the gradient by some other method beginning with the simplest finite
difference method. Of course, this will be more expensive computationally, but the gain in the development procedure may
compensate this excessive computational cost.

Concerning the data assimilation results, we see the data assimilation can correct errors of numerical scheme by control-
ling approximations near boundaries. This fact may be very useful in applications of this method to the ocean models. In
addition to natural corrections of the position of the rigid boundary and prescribed physical boundary conditions, we
may hope to be also able to improve the quality of the scheme that is used in internal points.

We can see in these assimilation experiments the presence of a kernel of the Hessian. Consequently, the choice of optimal
boundary parametrization is not unique. However, all sets of coefficients a from the kernel are equivalent: they provide the
same (or almost the same) cost function’s value and almost the same evolution of the model’s solution after the end of assim-
ilation. In the same time, we can note that optimal parametrization of derivatives near the boundary may approximate noth-
ing in classical sense, i.e. it may not be valid for an arbitrary function. We have seen here that obtained expression for @p

@x is
valid for the cosine-type functions with appropriate wavelength only. Hence, we must take into account that coefficients
found by data assimilation are valid for given model’s parameters only.

In the last experiment in this paper, with the wave composed by multiple trigonometric modes, we have encountered the
necessity to increase the number of control parameters. In the case when the optimum is unreachable, increasing the kernel
dimension allows to obtain better results. Combining the number of controlled coefficients (that increases the kernel dimen-
sion) and the possibility to dump the first term of the Taylor expansion of the resulting expression by (44) (that decreases the
kernel dimension) may help us to get a reasonable result.
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